Conversions	
1 <u>atm</u> =	1.01325 x 10⁵ Pa
	101.325 kPa
	760 mmHg
	760 <u>torr</u>
	14.7 psi

Boyle's Law

- $P_1V_1 = P_2V_2$
- Temperature and # moles held constant Indirect (or inverse) relationship If pressure goes \

Then volume goes

Charles' Law

$$\boxed{\frac{V_1}{T_1} = \frac{V_2}{T_2}}$$

- Pressure and # moles held constant
- Direct relationship If temperature goes 1 Then volume goes ↑

note Graph doesn't go all the way to zero because the molecules will eventually get as close as possible and they will still always take up space

Gay-Lussac's

Volume and # moles held constant

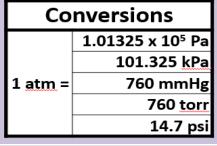
Law

Direct relationship If temperature goes 1 Then pressure goes 1

note Graph doesn't go all the way to zero because at low temperatures and pressures it won't be a gas anymore, it will turn into a solid or a liquid. We use dotted line to show the portions that are not gas phase

Avogadro's Law

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$


- Pressure and temperature held constant
- Direct relationship If # of moles goes 1 Then volume goes 1

Combined Gas

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

- # of moles held constant
- Combines most common variables together - not common to change moles of gas

Boyle's Law

- Temperature and # moles held constant
- Indirect (or inverse) relationship If pressure goes \

Then volume goes

Charles' Law

- Pressure and # moles held constant
- Direct relationship If temperature goes \ Then volume goes ↑

note Graph doesn't go all the way to zero because the molecules will eventual get as close as possible and they will still always take up space

Gay-Lussac's Law

- Volume and # moles held constant
- Direct relationship If temperature goes 1 Then pressure goes 1

note Graph doesn't go all the way to zero because pressures it won't be a gas anymore, it will turn int dotted line to show the portions that are not gas pl

Avogadro's Law

$$\boxed{\frac{V_1}{n_1} = \frac{V_2}{n_2}}$$

- Pressure and temperature held constant
- Direct relationship If # of moles goes ↑ Then volume goes 1

Combined Gas

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

- # of moles held constant
- Combines most common variables together - not common to change moles of gas

Conversions 1.01325 x 10⁵ Pa 101.325 kPa 1 atm =760 mmHg **760 torr** 14.7 psi

Boyle's Law

- $P_1V_1 = P_2V_2$
- Temperature and # moles held constant
- Indirect (or inverse) relationship

If pressure goes 1 Then volume goes

Charles' Law

- Pressure and # moles held constant
- Direct relationship If temperature goes 1 Then volume goes ↑

note Graph doesn't go all the way to zero because the mole get as close as possible and they will still always take up space

Gay-Lussac's

- Volume and # moles held constant
- Direct relationship If temperature goes 1 Then pressure goes 1

note Graph doesn't go all the way to zero because a pressures it won't be a gas anymore, it will turn into a dotted line to show the portions that are not gas phase

Avogadro's Law

- Pressure and temperature held constant
- Direct relationship If # of moles goes 1 Then volume goes 1

Combined Gas

- # of moles held constant
- Combines most common variables together - not common to change moles of gas